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Abstract: A general theory for solid state reactions, particularly of organics, that is based on the previously developed 
concept of chemical pressure is presented. Elastic multipoles are used to formulate the theory, suosequently yielding 
quantities that can be calculated using experimental data such as atomic displacement parameters, optical and acoustic 
phonon dispersion, or elastic constants. From this treatment, quantitative descriptions of the reaction cavity, steric 
compression, and reaction-induced stress are obtained. Analogies to atomic and frontier orbitals are noted. Further 
insight is gained into phonon assistance, the definition of homogeneity of a reaction, and the role of the product 
molecules, as perturbations, on the activation energy. The correlation of the chemical pressure to structural changes 
associated with the reaction is also examined. The generality and unifying aspects of the theory are demonstrated 
by application to detonation, thermal, and photochemical reactions in solids. 

1. Introduction 

Parallels can be drawn between the status of organic solid 
state chemistry nearing the conclusion of the twentieth century 
and the status of organic chemistry during the final years of 
the nineteenth century. In both, remarkable strides had been 
made during the last halves of their centuries and detailed and 
effective phenomenological frameworks had been developed 
with many useful concepts. For organic chemistry, fruitful ideas 
ranged from the role of optical activity by van't Hoff and Le 
Bel to the concept of aromaticity initiated by the fabled dream 
of Kekule. For organic solid state chemistry, the topochemical 
principle1,2 has provided a useful conceptual basis for the growth 
of the field. From this foundation, much illuminating experi­
mental work and many concrete ideas about solid state reactions 
have developed. Among these are the formulation of the 
reaction cavity concept,3 the postulate of steric compression,4 

the examination of the role of defects, particularly by Thomas 
and co-workers,5 the careful study of the role of local stress,6 

the development of the phenomenology of the hydrogen bond,7 

the further elaboration of the ideas of crystal engineering,8 the 
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development of the use of conformational polymorphism,9 the 
notation of the halogen effect,10 the control of crystal growth 
and reactivity,11 and the proposal of phonon assistance of 
reactions.12 In addition to these, much fascinating chemistry 
has been observed for many other systems by other investigators 
who have advanced important contributions to organic solid state 
chemistry.13 Particular focus has been on photochemical 
reactions of solids,14 and these studies have proven particularly 
useful for elucidating the mechanisms of solid state reactions. 

A distinguishing characteristic of solids is their structure. 
Thus, it is not surprising that the major thrust of studies on 
organic solid state reactions has focused on X-ray structural 
analysis of reactant and product crystals. In spite of the use of 
a technique so intimately involved with the characteristics of 
solids themselves, the emphasis has been largely on the local 
structure associated with the reacting species in the solid. This 
has led to some lack of attention to another unusual property 
of solids, their display of collective properties. 

One manifestation of collective properties is a phase transi­
tion. Indeed, consideration of a solid state reaction leads to 
the conclusion that, by its very nature, a reaction in a crystal 
must be accompanied by some change in the phase. This has 
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been emphasized recently by Dunitz.15 Recent study of the 2,5-
distyrylpyrazine single-crystal to single-crystal photoreaction14 

by Eckhardt and co-workers16 has further stressed the importance 
of collective excitations on the fate of a solid state reaction. 

What is missing from this richness of results is a quantitative, 
unifying framework. As at the turn of this century, formalisms 
must be developed that can join these many creative ideas and 
useful results into a serviceable structure. For organic chemistry, 
it may be argued that the major breakthrough came with the 
Lewis dot structures which were followed soon by quantum 
theories of valence. While organic solid state chemistry does 
not require such fundamental developments as quantum me­
chanics, it does require a theoretical structure that can bring 
together the salient aspects of chemistry and the solid state that 
are necessary for any complete understanding of solid state 
reactions. 

Initial, but circumscribed, quantitative approaches have been 
made most notably by Baughman.17 A more complete formula­
tion was advanced by Nagaosa and co-workers,18 who developed 
a unified approach to photoinduced structural changes, and by 
Luty and Fouret,19 who developed the microscopic idea of the 
chemical pressure in a reaction cavity. From the latter, a theory 
of solid state reactivity was developed. Although it provides a 
useful conceptual framework and expressions for calculation, 
the theory does not lend itself easily to computation. Extension 
to simpler ideas based on local molecular behavior and 
straightforward macroscopic solid state properties could permit 
the forging of a new framework for greater ease of understanding 
solid state reactions and, perhaps more importantly, yield a 
theoretical construct that works with calculational ease through 
direct connection to measurable or easily computed properties. 
Any theory pretending to model a reaction in the molecular solid 
state must take into account both a molecular transformation 
which is in the realm of chemistry and structural changes related 
to it which are normally considered to be the province of 
physics. Such structural changes are not, in general, a sum of 
local variances, because the collective nature of the solid state 
has to be considered. 

A molecular transformation necessarily involves electronic 
degrees of freedom, and such a process can be seen as a 
reorganization of an electron distribution. Given that thermal 
energies are usually barely noticeable on the scale of electronic 
transitions, it is safe to predict that the electronic structure of a 
molecule and its changes would never become a problem of 
statistical mechanics, even in a condensed phase. Yet, there 
are numerous examples in which electronic structure is strongly 
affected by such a phase. Solid state reactions are particularly 
important processes in which the condensed phase couples to a 
molecular geometry which in turn can radically alter electronic 
structure. Solids can also afford a direct coupling between 
electronic structure and an environment, thereby leading to a 
specific "solvent effect". This is well understood for electron-
transfer processes in a solution20 where the solvent effect arises 
from a coupling of the electron-transfer dipole with a polarizable 
medium characterized by the dielectric susceptibility and having 
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some mechanical susceptibility which may be associated with 
a slowly varying field.20 

For a reaction in the solid state, the situation is more 
complicated, since the lattice at an initial stage of reaction plays 
the role of a solvent but also becomes a reactant itself in the 
course of the reaction. Due to the many-body nature of the 
solid state, the perturbation due to a chemical transformation 
at a site is transmitted to other sites via collective excitations. 
Thus, a solid state transformation should be considered as a 
self-consistent and highly correlated process of creation of 
perturbations which, in the case of a solid state reaction, are 
the product molecules. 

A molecular solid can be conveniently modeled by consider­
ing the molecular electronic degrees of freedom to be embedded 
in an electrically, but predominantly mechanically, susceptible 
medium. Therefore, any chemical transformation at a lattice 
site will be recognized by the lattice as both an electrical and 
a mechanical (e.g. stress) perturbation which interacts with 
surrounding sites through electrical and mechanical fields. The 
relative importance of the fields depends on the particular nature 
of the on-site transformation. The importance of structure to 
chemistry leads one to conclude that it is the mechanical field 
of a crystal that will be essential for the description of most 
solid state reactions. Indeed, early discussions of organic solid 
state reactions have tended to stress the importance of the static 
structure of a reactant molecule and its environment which is 
usually defined as a molecular cavity. This "geometrical 
approach" is known as the topochemical principle1,2 and is 
widely used in solid state organic chemistry. However, it has 
not been confronted with a realistic description of a crystal 
which would be expected to provide a relation to elastic 
properties. A need for such a connection seems quite obvious 
and has been postulated.4 

The importance of lattice stress in solid state reactions has 
been previously suggested beginning with Baughman's work17 

on the role of strain in the kinetics of solid state polymerization 
and later by the research of Hollingsworth and McBride4'6'21-22 

on the structural role of strain. It became evident that "...because 
of stress generated by reaction, the intermediates often follow 
indirect trajectories rather than least-motion paths, and the 
mechanical properties of the surrounding medium can become 
as influential on reaction as its shape is".4 In the only current, 
albeit approximate, approach,22 the reacting crystal has been 
treated as an isotropic continuous elastic medium with a 
molecular cavity represented as a sphere. It has been estimated 
that a 10% radial expansion of the cavity would require an 
internal pressure of about 10 kbar, which is consistent with 
pressures that have been suggested for some reactions.21'22 

These findings indicate that the effect of local stresses must be 
important for solid state reactions. 

However, an approximation which treats a molecular crystal 
as an isotropic elastic medium is not adequate, especially in 
the context of the highly "stereospecific" reactivity observed 
in the solid state. Such an approximation neglects the high 
degree of anisotropy of a crystal and fails to provide a specific 
molecular mechanism by which a local stress is transmitted 
through the lattice by interaction between local stresses. This 
is reflected by Hollingsworth and McBride who observed that 
since "...it is difficult to predict how a single molecule should 
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respond to local stress", then "...properly understanding reactions 
in rigid media and fully realizing their synthetic potential will 
require better insight into the mechanical properties of solids 
at the molecular level".6 This contribution suggests a way to 
approach this problem. 

In a highly anisotropic molecular crystal, the molecular 
mechanism by which a local mechanical perturbation is 
transmitted through the lattice is very important and therefore, 
a theory related to crystal elasticity is required. The chemical 
pressure concept19 was a first attempt in this direction. The 
behavior reported by McBride and co-workers4,6,21,22 is consis­
tent with that theoretical description.19 The theory emphasizes 
that the deformation energy due to the formation of product 
molecules is a many-body phenomenon and thus is nonadditive. 
This implies that regardless of how localized the initial 
perturbation may be in a chemical reaction, the cooperative 
nature of the crystal environment cannot be discounted and must 
of necessity have an influence on the reaction itself. Recent 
work of Peachey and Eckhardt16 strongly supports this. 

The theory outlined by Luty and Fouret19 can be further 
elaborated to generate a close relation to elasticity theory. The 
local stress effect can be described in terms of elastic multi-
poles23 with the lattice deformation energy arising from their 
interaction. The multipoles, being a measure of the chemical 
pressure, allow for characterization of both the geometry and 
the energetics of a reaction cavity within the same conceptual 
framework. The chemical pressure, chemically induced stress, 
addresses both the local characteristics of a reaction represented 
by elastic multipoles of a reaction cavity and the resultant 
collective consequences of the local perturbations which are the 
structural changes due to interaction of the elastic multipoles. 
Such a description not only provides a conceptual link between 
the topochemical principle1,2 and phonon assistance,12 which 
have been suggested in the past as descriptive mechanisms for 
solid state reactions, but also serves as an approach that allows 
for categorization of a solid state reaction with such phenomena 
as crystal or glass phase transitions. That such a unified 
approach is needed is evident when one considers additional 
solid state transformations such as the molecular-to-atomic 
transition in solid iodine,24 the neutral-to-ionic transition 
(molecular bistability) in some charge-transfer organic com­
pounds,25 or other electron-induced transitions26 in molecular 
solids. 

The theoretical formulation begins with a description of a 
molecular crystal with a model that emphasizes a susceptibility 
approach to the mechanical properties of a crystal and shows a 
level of approximation where the mechanics of a crystal are 
described only by the elastic constant tensor. Additionally, it 
is demonstrated how the atomic displacement parameters 
(ADP's) extracted from a crystal structure determination can 
be useful in the analysis of the mechanical properties of a crystal. 
In section 3, local perturbations are introduced into the perfect 
lattice. From a coupling to the mechanics of the lattice, the 
chemical pressure is derived and it is shown how it induces 
structural changes. The chemical pressure is then described as 
a distribution of forces acting on atoms which form a cavity 
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for a perturbed lattice site. This allows introduction of the 
concept of elastic multipoles and their use in deriving a 
description of the molecular reaction cavity. These elastic 
multipoles are mechanical analogs of electrical multipoles. The 
similarity is developed to show that an expansion of the elastic 
multipoles can be used to describe the distribution of forces in 
a reaction cavity in the same way a radial charge distribution 
about an atom is represented by an expansion of atomic orbitals. 
In section 4, interactions are calculated between elastic multi-
poles, e.g. the lattice deformation energy is derived. The elastic 
properties of the reactant crystal are altered due to a distribution 
of the elastic multipoles, and this effect is calculated also. An 
average over the elastic multipole distribution allows for 
calculation of the free energy for a reacting crystal akin to that 
of a two-level (Ising pseudospin) system with a field and with 
interactions renormalized by contributions from lattice deforma­
tion energies. Finally, in section 5 are presented some of the 
possible applications of the concept of chemical pressure 
induced by a reaction and expressed in terms of elastic 
multipoles. Thermal polymerization, photoinduced reactions, 
and shock-induced reactions are shown to fall within the 
framework of the theory with the focus on the macroscopic 
nature of the reactions through collective interactions between 
perturbed molecules. 

2. A Model of a Reacting Molecular Crystal 

A model of a molecular crystal must be simple but contain 
all features important and relevant to the problem. We shall 
concentrate on mechanical properties of the crystal at a 
molecular level that involve a mechanical response of molecules 
to perturbations due to local transformations. The essential 
concept of a molecular crystal is that it contains well-defined 
molecules which weakly interact with each other. This is 
expressed in the Hamiltonian 

H = X^[Q(«)l - V2XX'Q(n)w("'n')Q(n') + 
n n n' 

I«»[<j(n);Q(")] (2.1) 
n 

The first term represents single-molecule contributions with 
fl^[Q(")] as the Hamiltonian of a molecule at the nth lattice 
site (in a field of others) being a function, not necessarily 
harmonic, of dynamical variables Q(n). We shall limit ourselves 
to molecular displacements—translational, u, and rotational, 
$—so Q(n){ux,Uy,uz;6x,6y,dz}. This restriction is mainly for 
maintaining clarity of the presentation rather than any conceptual 
constraint. Solid state theories are marked by an obscuring 
abundance of notation, and we hope to make the presentation 
as manageable as possible. Indeed, the dynamical variable Q(n) 
can embody intramolecular degrees of freedom or a set of them 
which may be appropriate for description of motion of rigid 
sections of the molecules. Regardless of how large the set of 
degrees of freedom included in Q(n) may be, the formalism 
remains the same. Obviously, the meaning of the corresponding 
couplings will be appropriately inclusive. The second term in 
the Hamiltonian describes coupling between the variables of 
two different (the prime sign in the summation) molecules by 
a force constant matrix W. Here, and throughout the paper, 
the standard matrix notation for tensor—tensor or tensor—vector 
products is assumed. The last term describes perturbations, 
characterized by an operator o(n), which couples to the 
dynamical variables. This part of the Hamiltonian need not be 
specified here but will be developed in the next section. 

The basic question is what the response of an individual 
molecule in the crystal is to an effective field, hQ(n), at site n, 
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which couples to the variable Qfnj. A stress field is an example. 
Since we are interested in structural changes, the response will 
be defined as a statistical average of the dynamical variable, 
(Q(n)), taken with the Hamiltonian 2.1. Within the linear 
approximation, it is 

(Q(n)) = X°hQ(«) (2.2) 

where X0 is the single-molecule susceptibility 

X0 =/3[(QQ)0-(Q)0(Q)0] (2.3) 

with/? = (VkT). The thermal averages (...)0 are calculated within 
the classical approximation with the single-molecule Hamilto­
nian. The single-molecule susceptibility is a 6 x 6 tensor and 
depends on temperature through the anharmonicity of the 
Hamiltonian, H°n[Q(n)]. In the limit J - O , only the harmonic 
part of the Hamiltonian will contribute to the thermal averages 
in eq 2.3 and consequently, limr—o (X0)-1 = W(nn). In the 
language of lattice dynamics, the inverse of the single-molecule 
susceptibility is the so-called self-term in the dynamical matrix. 
The local effective field which couples to the variable Q is 
conveniently approximated by a mean field 

hQ(") = ^Wnn')(Q(n')) + Y%) (2.4) 
n' 

where 

\ 9Q(«) la(n) 

stands for the perturbing field. This field depends on the 
particular nature of the local transformation specified by an exact 
form of the Hamiltonian, Hn[a(n);Q(n)]. With relations 2.2 and 
2.4, we get 

(Q(H)) = £X(nn ' )V%') (2.6) 
n' 

where X(nn') is the (nri) submatrix of the matrix 

X = [(X0)-1 - W]"1 (2.7) 

which is the nonlocal response function. This is the key function 
for our problem since it tells us how a perturbation at site ri is 
transmitted to and causes a response of a molecule at site n. 
The response function for a particular pair of molecules inn') 
has to be calculated as a corresponding block matrix of the 
inverse matrix constructed from the block diagonal matrix (X0)-1 

and force constant matrix W. This mathematical procedure 
reflects the physical fact that a perturbation at a given site is 
transmitted to another site via all other molecules coupled 
together by a network of "springs" characterized by the force 
constants, i.e. how it is transmitted by collective excitations of 
the molecules in the lattice. It follows from formula 2.6 that a 
quantitative estimation of a structural change due to local 
perturbation(s) and associated energetics requires a knowledge 
of the response function as well as a specification of the 
perturbation field VQ(n). Insofar as the response function is 
concerned, this would be equivalent to solving the lattice 
dynamical problem and then recognizing which of the lattice 
vibrations (phonons) are most likely to be responsible for 
mediation of interactions between particular perturbations. 
Intuitively, one can expect that local stresses introduced by local 
transformations of molecules would be transmitted mostly by 
the strain field, and therefore, the response function should be 

expressed in terms of the elastic properties of the crystal. To 
see how the response function is related to some measurable 
properties, such as elastic constants, phonon frequencies, and 
Debye-Wailer factors, we shall represent the function in 
reciprocal (q) space for ease of inclusion of lattice periodicity 
and relation to diffraction results. 

We introduce the Fourier transform of the force constant 
matrix 

W(q) = AT1^W(Wi') exp{iq[R(ri) - R(«)]} (2.8) 

where R(n) is a position vector of a molecule at site n and N is 
the number of lattice sites. The response function can now be 
written as a q-dependent, generalized susceptibility: 

X(q) = X°[l - X 0 W^)F 1 (2.9) 

The inverse of this matrix is an effective, temperature-dependent, 
dynamical matrix. The eigenvalues w2(qj) and eigenvectors 
e(qj) characterize phonons in the y'fh dispersion branch for a 
given q vector. Thus, 

x_1(q) = X^2(q/>(q/)Me(-q/) (2. io) 
;' 

where M is the mass moment-of-inertia tensor and the orthogo­
nality relation e(q/)e(-q/') = dy is obeyed. 

The response function X(nn') is calculated from the trans­
formation 

X(wi') = A T ^ X ( q ) exp{iq[R(n') - R(n)]} (2.11) 
q 

and for n = n' can be related to phonon frequencies as 

x(nn) = ^1XXcu~2(q/)e(q/)M~le(-q/> (2.12) 
1 j 

From its definition, the susceptibility is directly related to 
molecular Debye—Waller factors represented by the tensor B. 

X(Wi) = /3(Q(n)Q(n)) = 0B (2.13) 

The thermal average is taken with the total Hamiltonian of the 
unperturbed crystal. The tensor B is represented as blocks of 
tensors27 known as the translational (T), librational (L), and 
cross (S) molecular tensors of thermal vibrations. The tensor 

can be constructed from anisotropic ADP's, assuming rigid 
molecules. It can be generalized to include the lowest intramo­
lecular vibrations as well.28 This will be obtained when 
intramolecular degrees of freedom are included in the set 
described by the variable Q(n) (see eq 2.1). The important 
conclusion is that the mechanical response function X(nn) can 
be found from crystal structure analysis and the usually 
neglected set of ADP' s, which can also be very useful in 
calculations of the lattice deformation energy. The simple 
relation between the T, L, and S tensors of the thermal 
amplitudes and the mechanical response function X(nn) allows 
insight into how a single molecule in a crystal will respond to 

(27) Schomaker, V.; Trueblood, K. N. Acta Crystallogr. 1968, B24, 63. 
(28) Dunitz, J. D.; Schomaker, V.; Trueblood, K. N. J. Phys. Chem. 1988, 
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Verlag: Berlin, 1975. 
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a field which couples to its translation^ and/or rotational 
displacements. The magnitude and principal directions of the 
B tensor of a molecule reflect the geometrical arrangement of 
the neighboring molecules. In terms of solid state chemistry, 
one can view the response function X(nn) as an effective, 
mechanical susceptibility which measures the response of a 
molecular cavity to a mechanical field. It is important to note 
that the response accounts for pair correlations between 
displacements of molecules. 

A better interpretation and possible approximations for the 
response function X(nn') (n ^ n') are required however. The 
function is calculated formally from eq 2.11, where X(q) is the 
inverse of the dynamical matrix, and complete calculations 
would require an integration over the Brillouin zone of the 
matrix for every pair of molecules. An obvious approximation 
is the long-wavelength approximation ("mesoscopic limit"), 
which assumes that the distance R(n') — R(n) is on a mesoscopic 
scale. For large distances, only contributions with q ss 0 are 
important. Therefore, the dynamical matrix can be expanded 
and expressed in terms of optical phonon frequencies, co(0j), 
and the elastic constant tensor C 

lim X-1(q) = ya>2(0/)e(Q/)Me(0/) + V2VqCq 
q-0 j 

(2.15) 
where v stands for the volume of a unit cell. 

The approximation 2.15 when introduced into eq 2.11 allows 
for decomposition of the response function into contributions 
from optical and acoustic phonons. Since the function depends 
on the inverse of optical phonon frequencies, it is clear that 
their contribution will be much more important. This is why 
in the mesoscopic limit, the response function X(nn') can be 
approximated as 

X(WiO = 2 (MO - 1 ^qCq]" 1 exp{/q[R(n')-R(«)]} (2.16) 
q 

Calculations of this function are not easy, particularly for low-
symmetry molecular crystals. However, it is important to notice 
that the response function can be calculated from the known 
elastic constant tensor, which may itself be calculated from 
knowledge of the acoustic phonons' dispersion. The long-
wavelength approximation, which allows for simplification of 
the response function, means that on a mesoscopic length scale, 
the crystal is treated as an anisotropic elastic medium. 

This model describes the mechanical response functions for 
a molecular crystal in the simplest, viable approximation and 
shows how they can be calculated from experimentally deter­
mined properties: molecular Debye—Waller factors, optical 
phonon frequencies, and elastic constants. It is now necessary 
to specify the perturbations and describe them quantitatively. 

3. Local Perturbations: Chemical Pressure and the 
Elastic Multipoles of a Reaction Cavity 

Suppose that a molecular crystal with mechanical properties 
as specified in the previous section is locally perturbed and that 
the perturbations are of a chemical nature: substitutional, ionized 
or excited host molecules, reaction-generated product molecules, 
etc. To each lattice site is assigned a variable, a(n), with the 
value +1 if the site is occupied by a perturbation, otherwise 
a(n) = 0. The concentration of perturbations is defined as x = 
[N~lYm(o(n))~\m where the square brackets indicate a configu-
rational average. With this definition, the perturbed crystal can 
be seen as a virtual "solid solution", Hi-* P*, where every site 
is occupied by a host molecule (H) with probability 1 — x or a 
perturbation (P) with probability x. This "average picture" of 

the crystal will be useful when thermodynamic aspects are 
treated. The formation of the perturbations in the host lattice 
is an obvious case of mixing, and the degree of heterogeneity 
or homogeneity of the process is of importance and will be 
discussed at the end of section 4. Before this, however, it is 
necessary to view every site as being occupied by either an H 
or a P molecule. 

An introduction of a perturbation of a given type at site n of 
a perfect lattice costs energy. 

Hn = [AEf + ^AE(nn')]a(n) + JJ[o(n),o(n')] (3.1) 
n' n' 

The first term, AEP, represents the difference in energies of 
perturbed and unperturbed molecules. The second term ac­
counts for the fact that the perturbation with energy A£° above 
the ground state of the crystal is created in the crystal. The 
last term describes a possible direct interaction between 
perturbations at different sites. Let us concentrate on the second 
term which represents couplings to molecular degrees of 
freedom. 

AE(nn') = \(nn')Q(n) = -\(nn')Q(n') (3.2) 

This equation defines forces, \{nri), which couple the perturba­
tion with degrees of freedom of surrounding molecules. 

Now, the energy cost of introducing the perturbation is 

Hn = [AE0 + Q(n)y(n)]a(n) (3.3) 

where v(n) is the total extra force generated at the site n which 
is occupied by a perturbation. The force is acting on all 
surrounding molecules, since it is defined as a sum \(n) = 
Sn'v(nn')- This is an excess force associated with the local 
transformation 1 — o(n) —* o(ri) which is of a chemical nature 
and for this reason called the "chemical pressure". To grasp 
the role of the excess force, an analogy can be drawn to the 
molecular orbital theory of reactivity.29 In that theory, the 
frontier orbitals, the HOMO and LUMO, play an essential role. 
The excess force \(n) is a measure of the change in energy of 
the frontier orbitals of the nth molecule in the crystal with 
respect to the reaction path described by the set of coordinates 
Q(n). A relation to the local stress tensor arises from the 
definition of a stress. 

It can be shown that when the chemical pressure is repre­
sented by central forces, only the diagonal elements of the stress 
tensor are generated and the force distribution in the cavity of 
the nth molecule, v(n), is directly related to a local pressure. 
The chemical pressure is easily recognized as arising from 
different kinds of couplings. For example, if perturbations are 
introduced by exciting the host molecules into an electronically 
excited state, v(n) corresponds to the so-called Stokes shift and 
is simply related to the D term in the theory of molecular 
excitons.30 v(n) can also be related to the Griineisen parameters 
if one considers, as a perturbation, a molecule in a vibrationally 
excited state and accounts for coupling to a lattice strain. Thus, 
the chemical pressure represents all extra forces which are 
generated locally in a crystal due to a transformation. The forces 
generated by the perturbations at a given site can be treated as 
the "applied" field in this formalism (see eq 2.4), so 

VQ(n) = v(n)(o(n)) (3.4) 

and the structural change induced by the chemical pressure is 

(30) Davydov, A. S. Theory of Molecular Excitons, Plenum Press: New 
York, 1971. 
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<Q(«)> = XX(nn')v(n')<<7(«')> (3.5) 

In this description, it is assumed that a perturbation at site n 
acts on surrounding molecules, which means that the forces 
depend on distances between the centers of mass of the 
molecules. This is, however, too crude a description for a 
molecular crystal, and a perturbation at a site would be better 
represented by a set of forces acting on atoms of surrounding 
molecules. In particular, consideration is focused on those 
atoms which form a cavity for the molecule being transformed 
(the perturbation). Therefore, a more detailed description of 
the chemical pressure, v(n), is needed. This requires the 
involvement of concepts of elasticity. 

The chemical pressure at a given site n, defined as an 
arrangement of extra forces acting on surrounding molecules, 
forms a distribution within the cavity surrounding the molecule. 
Although the distribution, v(n) = X„'v(««')> depends on the 
geometry of the environment of the nth molecule through 
interaction of the perturbation with its surroundings, this 
information is hidden in a molecule—molecule interaction 
representation. To uncover it, atoms of surrounding molecules 
which form a cavity for the molecule n must be considered 
explicitly. Let the set of vectors {r(n!)} joining the center-of-
mass of the perturbing molecule n to the atoms forming the 
molecular cavity be defined. The chemical pressure in the 
cavity, which may be regarded as the reaction cavity, is now 
described as a distribution of forces acting on the atoms, v(n) 
= E|V(n|). These forces, actually their negatives, may be 
identified with steric compression. Equation 3.3 is rewritten 
as 

Hn = a(n)[A£° + XQ[r(n!)]v(n|)] (3.6) 

and so on, as is consistent with elasticity theory.23 The elastic 
multipole concept helps to represent the geometry and energetics 
of a molecular cavity in greater detail. In particular, the elastic 
dipole and higher multipoles explicitly contain in their defini­
tions the shape of the cavity and the chemical pressure 
distribution inside of it. Using again the perspective of 
molecular orbital theory, we may view the distribution of forces 
in the reaction cavity as being "shaped" by the frontier orbitals 
participating in a chemical process and the elastic multipole 
expansion as being determined by the angular distribution of 
those orbitals. The elastic multipoles are a quantitative measure 
of how much a cavity of a perturbed molecule differs from a 
sphere at equilibrium pressure. (For a spherical cavity of radius 
r and isotropic pressure p, the elastic dipole moment is Anpr2.) 
The elastic dipole is easily related to the local stress tensor p(n) 
= V-1PCn). The chemical pressure, as an excess stress, can be 
parametrized, with the help of spherical unit tensors,23 in a form 
which explicitly divides it into isotropic pressure (ps) and 
anisotropic stresses (pm), e.g. 

where 

PiJ= Ps8Ij+ ^LPman 

Ps = 1^(PxX+Pyy+Pzz> 

PO ~ 1Oe(2P'zz ~Pxx~ Py) 

Ph 

Ph 

= ^Px 

(3.9) 

The set of displacement vectors, Q[r(n|j], which measure the 
deformation due to the force distribution, can be expanded, and 
the second term of eq 3.6 is then written as 

XX2,-[r(»§)]v,-(«£) = XoC/oXVnS) + 
i I i I 

XXey(">5>/"£)v.("£) + - (3-7> 

where 

3fi,[r(n§)] 
(3.8) 

is a local strain which is assumed to be homogeneous within 
the cavity of the nth molecule. The tensor is, in general, 
nonsymmetric and can be further decomposed into a symmetric 
part, the macroscopic strain which is homogeneous in the crystal, 
and an inhomogeneous part.31 The latter is related to internal 
strains and thus to displacements of molecules within the unit 
cell Q(n). The expansion in 3.7 allows for definition of the 
elastic multipoles of the cavity at the nth site 

V(n) = 2,v(«|) (the net force) 
I 

Pifn) = 5/",.(/1I)Vy(Ti!) (an elastic dipole) 
I 

(31) Born, M.; Huang, K. Dynamical Theory or Crystal Lattices; Oxford 
University Press: Oxford, 1954. Sharp, N. D.; Walmsley, H. Chem. Phys. 
Lett. 1994, 222, 546. 

Pic = 1I'Jl(Px* ~ Py) 

Pis = ^2Pxy 

and the real spherical unit tensors are 

_ i a0= /ViO 

»i, = 1Z^IO 

/0 0 1) 
."Ic = 1VaO o o 

\1 0 Oj 

, l ) 
0 0 0/ 

/1 0 
3 2 C = 1 Z ^ O " I 

/0 1 0\ 
H217 = Vv5I o o 

\0 0 0/ 
The parametrization of the local stress reveals that every 
perturbation will act, first of all, as a center of dilitation and 
then, depending on the symmetry of the perturbed cavity, as a 
center of shear stresses. The above decomposition of the elastic 
dipole is analogous to the s (isotropic part) and d (shear stress, 
which is anisotropic) atomic orbitals. A net force would be 
partitioned like p orbitals. This partitioning of the chemical 
pressure also suggests the simplest approximation one might 
use to represent local stress, namely, as an isotropic excess 
pressure at the nth cavity. The model used by Hollingsworth 
and McBride22 is essentially this approximation. 

In this model, the elastic multipoles can assist in quantitatively 
understanding solid state reactivity, thereby augmenting the 
intuitive constructs that have been offered, for example, by 
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Thomas et al.32 The scope for chemically modifying the 
molecule has been investigated by determining the tightness of 
the lattice packing at each site. This has been done by 
specifying a parameter known as the local packing density nu 
defined as I ^ r y - 2 , where J is an integer specifying the 
maximum number of atoms regarded as local to the atom ;', i.e. 
to those atoms that form the cavity. It has been found that the 
higher the value of the packing density at a particular site, the 
less likely it is that substitution at this site will preserve the 
reactive structure.32 This is essentially a "rule" based on 
geometry and indicates how strong the need is to have a better 
measure of the energetics and geometry of a reaction cavity. 
The use of elastic multipoles offers such a measure. 

The energy change due to perturbation at the nth cavity is 
now expressed as 

Hn = o(n)[A£° + Q(n)V + «(«)P + ...] (3.10) 

where it is assumed that perturbations are the same at every 
perturbed site. Therefore, the elastic multipoles are site-
independent. The local strain tensor, e(n), and internal strain, 
Q(n), are corresponding variables which couple to the elastic 
multipoles. The "locality" of these quantities depends on how 
spacially extensive the effect of a perturbation originated at a 
site n is. The effect of lattice dilatation is contained in eq 3.10 
as the isotropic pressure term ZnEiC»(n), which results in the 
readjustment of the lattice constants. 

With the introduction of elastic multipoles, structural changes 
are measured by an average displacement 

<Q(«)> = X[X(nn')V + X W ) P + -]{o(n')) (3.11) 
ri 

where X'(ran') is the first derivative of the response function 
X(nn') with respect to the position vector of the ri molecule, 
R(n'). This equation may be considered as an introduction of 
elastic multipoles equivalent to that performed with eq 3.7. 

4. Interaction of Elastic Multipoles: The Free Energy 

The interaction of elastic multipoles decreases the crystal 
energy by the amount of the lattice deformation energy. The 
lattice deformation energy is the elastic analogue of the lattice 
polarization energy. It is work done against the chemical 
pressure, itself a distribution of forces, which appears at different 
sites of the crystal. It may also be viewed as an electron— 
phonon coupling. The deformation energy is 

*def=-I/2X<Q(»)>VQ(n) (4.1) 
rt 

which from eq 2.6 is equivalent to 

^def = - V 2 £ I > Q ( n ) X ( n n ' ) V V ) (4.2) 
n ri 

and 

*def = -V2XZ(Q(^X -WXCXn')) (4.3) 
n ri 

When the local stresses are described in terms of elastic 

(32) Wright, J. D. Molecular Crystals; Cambridge University Press: 
Cambridge, U.K., 1987. Thomas, N. W.; Ramdas, S.; Thomas, J. M. Proc. 
R. Soc. London 1985, A400, 219. 

multipoles, the equation becomes 

*dtf = 

-1/2XISS7^ />^)(w)PA0(" ,)V(«(^(»" /)<a(n)a(n')) 
n ri k I k'l! 

(4.4) 

where Pi(k>(n) stands for a component of an elastic multipole 
characterized by the k indices and where the corresponding 
derivatives of the response function X(nn') are indicated. 

The deformation energy can be decomposed into the self-
energy of the perturbed cavities and their interactions with 
perturbation centers. The self-energy is just the energy needed 
to put the separate perturbations into the elastic medium and is 
calculated for n = n'. When the perturbation is characterized 
by a distribution of forces within a cavity acting on the atoms 
£ forming the cavity, this energy is 

*seif=-^N-xYZYLw^v^Hn^a^>) (4-5) 

where U(n§) stands for the tensor of the anisotropic ADP's of 
atoms § which form the cavity at site n. In the derivation of 
this equation, the same arguments are employed as in the 
formulation of eq 2.13. The ADP's may be obtained from X-ray 
structure analysis, but the chemical pressure of the cavity as a 
set of forces acting on the atoms | must be calculated. The 
important property of the self-deformation energy is that it is 
proportional to the concentration of perturbations. 

The lattice deformation energy which arises from interactions 
of perturbations at different sites (n ^ n'), is calculated from 
eq 4.4 using a response function, X(nn'). that is as general as 
possible. The simplest approximation is given by eq 2.16 where 
the function is expressed in terms of elastic properties only. 
Even within this approximation, it is very difficult to calculate 
the function for crystals of low symmetry. In fact, the function 
is known in an analytical form only for an isotropic elastic 
medium and a hexagonal simple lattice.33 For other cases, one 
has to calculate it numerically, but some simplifications can be 
made when one is interested in interaction between perturbations 
along a particular, preferably high-symmetry, direction in a 
crystal. The important property of the function is that it can 
be negative or positive for some directions, thereby representing 
highly anisotropic elastic interactions between perturbations. 

Overall, the lattice deformation energy is negative and 
stabilizing, but the directional dependence of the contributions 
for n * n' can be of essential importance for developing a 
"clustering pattern" in the crystal. This can be analyzed by 
taking into account the fact that the deformation energy depends 
on (o(n)a(n')), the function describing correlation of perturba­
tions at different sites. It then becomes clear from eq 4.4 that 
a particular configuration of perturbations measured by the 
probability (a(n)o(n')) can be either favored, if the interaction 
energy is negative, or disfavored, if it is positive. As long as 
the interaction is calculated with the response function ap­
proximated by eq 2.16, predictions concerning the correlation 
of perturbations would improve with increasing distance between 
the correlated sites. This is akin to a polarizable medium where 
interaction of two charges moderated by a static dielectric 
constant as a screening parameter becomes more accurate with 
increasing distance between the charges. 

The final goal is to determine the free energy changes in the 
crystal that are related to a local transformation, 1 — a(n) —* 

(33) DeWit, R. Solid State Phys. 1960, 10, 247. 
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o{ri). This will be completely described by 

A F = ^ [ I n Z ] 3 , (4.6) 

where the partition function Z is calculated from an effective 
Hamiltonian, H^a), which describes the local transformation 
in the lattice. 

Z= Tr exp[-/?Heff(cr)] (4.7) 

In order to find the effective Hamiltonian, the perturbed 
crystal is represented by variables which are related to elastic 
multipoles. Taking into account eqs 2.1, 2.11, and 3.9, one 
obtains 

Heff(Q,e,a) = V2XXCKn)X"'(nnOCK"') + 
n ri 

V2VJe(Zi)Ce(Ii) + Ja(n)[A£° + Q(n)V + e(n)P] (4.8) 
n n 

where direct interaction between perturbations and higher elastic 
multipoles has been neglected. The Hamiltonian can be further 
simplified by assuming that the inhomogeneous part of the local 
strain is included in the Q(n) variable. Therefore, the strain, e, 
can be treated as homogeneous and site independent. With these 
approximations, the effective Hamiltonian is similar to that 
derived for orientational glasses.34 The coarse-graining proce­
dure used in that derivation corresponds to our formulation of 
the elastic multipoles of cavities and the approximation used to 
express the response function, X(nn), through the elastic 
properties. 

The crystal free energy is obtained from F = -/3[In Z,]av, 
where Z' is the partition function calculated by integration over 
e and Q(n) and summation over a states. The free energy has 
to be a minimum with respect to the macroscopic strain, e, and 
the internal strain, Q(n). The conditions for the mechanical 
equilibrium yield the important relations 

[<«>].v = -V-1SP[AT1 J<a(n)>]av (4.9) 
n 

and 

<Q(«)> = JX(n«')V<a(«')> (4.10) 
ri 

The above equations now describe structural changes and replace 
eq 3.11 which defines displacement as a series expanded in 
terms of elastic multipoles that measures such changes. The 
structural change is measured by the macroscopic strain, eq 4.9, 
and the internal strain, eq 4.10. The macroscopic strain is 
present because there is a non-zero concentration (x) of 
perturbations to which it is proportional. The strain caused by 
the elastic dipole depends on the crystal compressibility 
measured by the elastic compliance tensor S. Relation 4.10 
corresponds to the first term in eq 3.11 where the mechanical 
response due to higher elastic multipoles in the earlier expression 
has been replaced by the macroscopic strain. 

As an immediate result of the above relations, renormalization 
of the mechanical properties of the crystal due to the perturba­
tions is achieved. First, the elastic compliance, S = C -1, has 
to be calculated as a matrix of second derivatives of the total 
free energy with respect to homogeneous stress. This means 

(34) Vollmayer, H.; Kree, R.; Zippelius, A. Phys. Rev. 1991, B44, 12238. 
Walasek, K.; Lukierska-Walasek, K. Phys. Rev. 1993, B48, 12550. 

that Sijki = PN[{eij€ki)]a.v can be calculated with the Hamiltonian 
4.8. The result is 

S = S°(l + PSpX0) (4.11) 

where S0 is the elastic compliance tensor of the unperturbed 
crystal and Xa stands for the correlation function of the 
perturbations: 

Xa = /3[AT1XX<a(n)a(n'))]av (4.12) 
n ri 

The thermal average of the product o(n)o(n') has to be taken 
with the effective Hamiltonian of the crystal, He^(a). 

The relation 4.10 also shows that the response function, 
X(nn'), will be renormalized due to the presence of perturba­
tions. Calculating the renormalized function, X(nn') = 
P(Q(n)Q(n')\ with the total Hamiltonian yields 

X(wi0 = X(BnO[I + /3ArlVXX(n'n'0 V(o(n')o(n"))] 

where X(nn') is the unperturbed response function. With the 
help of this equation, one can estimate changes in molecular 
Debye—Waller factors. These would be proportional to the 
correlation function (a(n)o(n')). 

The effective Hamiltonian, H^a), is calculated from eq 4.8 
by integrating out the mechanical degrees of freedom with the 
result 

H^a) = A^>(n) - ll£%J{nn')o{n)o{ri) (4.14) 
n n ri 

which is the Ising Hamiltonian with the "field" A = A£° — 
<J>seif- The self-deformation energy is expressed as 

3>self = pS°p + ,8VBV (4.15) 

where the contributions from elastic dipoles and net forces 
(torques) are separated. Equation 4.5 can be equivalently used 
to calculate the energy . The self-deformation energy plays 
exactly the same role in a solid state reaction as the solvation 
energy does in a liquid state reaction. However, the important 
difference is that in the solid state, it is the total deformation 
energy (eqs 4.1—4.4) that plays the role of "solvation" energy 
and determines the activation energy for a transformation. 

The activation energy can be calculated with the help of 
Figure 1 which schematically illustrates the meaning of the 
deformation energy. If a process involves both (Q) and (e), 
and since the structural changes and the variables are not directly 
coupled, the question arises, which path will the system follow? 
Some insight can be gained by remembering that a "fast" field 
can follow a "slow" one but not vice versa. This means that 
for every state of the system that is characterized by a 
macroscopic strain, there will be a thermal equilibrium for the 
internal strain, Q. Therefore, the internal strain (Q — field) 
can be integrated out for every state of strain, and the process 
will follow the macroscopic strain e-path with A£° — A£° — 
4>£.f, and the activation energy calculated as 

[AF0 - <Dd
e
ef]

2 

A£act = — — (4.16) 
4*def 

If, however, the only structural change involved is the internal 
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Q "fast" 

Figure 1. Schematic illustration of deformation energies due to 
homogeneous strain, e, and internal strain, Q. The strains are involved 
in the solid state transformation but are not themselves directly coupled. 
The activation energy is indicated along the e-path. 

strain, (Q), then the activation energy is calculated as 

The corresponding deformation energies must be equal 

$def = V2PS0P[AT 1XX(CT(HMnO)L (4.18) 
n n' 

and 

*def = V2[A^XXvX(nn')V(CT(n)CT(n')>:L (4-19) 
n ri 

The important aspect of the deformation energies is that they 
depend on the correlation function between perturbations. 
Therefore, these correlations influence the activation energies. 
As will be demonstrated in the following discussion, the function 
can be expressed in terms of the average concentration of 
perturbations, and consequently, the activation energy will be 
concentration-dependent. This can have an important effect on 
the kinetics of solid state reactions. 

The coupling term in eq 4.14 contains, in general, contribu­
tions from direct and indirect interactions. 

J{nn') =f[o(n),o(n')] + \X(nn')\ + pS°p (4.20) 

With the Hamiltonian 4.14, the free energy difference due to 
the local transformations can be calculated from eq 4.6, and 
thermodynamical quantities can be calculated from the partition 
function, eq 4.7. The configurational average contains the 
information on the concentration of perturbations, their spacial 
distribution, and their mutual correlation. In terms of solid state 
chemistry, it corresponds to the amount of product molecules 
and their clustering by, say, oligomerization. For every 
particular solid state transformation, the configurational average 
has to be calculated or assumed in order to calculate the 
susceptibility, Xa (eq 4.12). With the effective Hamiltonian, it 

can be calculated from the relation 

V 1 = [^1XiJf1 - Ann')}]av (4.21) 
n' 

where % is the local, two-state susceptibility, % = /3(a)o(l — 
(CT)O), and the expectation values, (a(n))o, are calculated with 
the local part of the effective Hamiltonian. 

(CT)0 = (1 + e* V - e^ A = (CT)0(I - (CT)0)-
1 (4.22) 

Clearly, the mean value, (CT)O, is associated with the degree of 
chemical transformation which takes place at a site with energy 
difference A. 

Including the coupling between perturbed sites, the suscep­
tibility X0 can be calculated within the mean field approximation 

K = ^[AT1X(CT(K))(I - (CT(n)))]av (4.23) 
n 

where 

(cx(n)) = V2(tanh V 2 ^ - A + J(o{n))) + 1) (4.24) 

with J = Yjn'J{nn'). Now, the mean value, (o(n)), not only is 
associated with the degree of a chemical transformation at site 
n but also includes the effect of interactions between sites. In 
this guise, it corresponds to a "nonideal solution" as traditionally 
formulated by equilibrium chemical thermodynamics. If the 
transformation 1 — a(n) -* o(n), which is a source of lattice 
perturbations, involves quantum overlap or a tunneling effect 
between the two states, then the effective Hamiltonian, eq 4.14, 
has to be modified to —tox + Heff(o), where t is the overlap 
integral, Ox stands for the Pauli matrix, and the a operator is 
understood now as the az matrix. The quantum overlap between 
the states leads to energy differences at every site, At = (r2(a) 
+ 4t2)m, where the mean field is given by T((CT)) = A - J{o). 
The degree of chemical transformation at a site is therefore 

(CT), = V2(FA,"1 tanh V2^A, + 1) (4.25) 

where the term TAr1 measures the degree of quantum mixing 
of the two states. 

A comment is warranted concerning the configurational 
average which has to be obtained when calculating the 
susceptibilities. When doing so, one has to account for possible 
cluster formation in the "product" state (a(n) = 1). Therefore, 
taking the average, [N~l1,no(n))]m, requires inclusion of the 
concentrations of clusters such as oligomers containing, say, 
m molecules. Then for linear oligomers, the susceptibility, X0, 
can be approximated by the expression /3(1 — X)I1nX". 

Finally, the simplest expression for the free energy change 
is obtained by assuming a uniform distribution of the "reacting" 
sites. The free energy change per molecule is 

Af=AFMr=AJc-V2Jx2 + 

/3_I[x In x + (1 - x) In(I - x)] (4.26) 

for nondegenerate states of the perturbation. The concentration 
is defined as x = [Ar-1Xn(CT(n))]av and represents the degree of 
transformation for a whole system with a uniform distribution 
of the transformed sites. The thermal average, {o(n)), itself 
determines the degree of the transformation at a particular site 
due to quantum mixing (in general) and thermal agitation. The 
above equation holds an important message. Solid state 
chemical reactions can be modeled by an interacting boson gas 
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(J ^ 0), where the interaction between reacting centers is due 
to local chemical pressures and is mediated by an elastic strain 
field. 

For a chemical transformation to proceed in a crystal, it is 
necessary that the field will not be zero, e.g. A ^ O . The 
interaction term, J, will then determine if the transformation 
will proceed as if occurring in an ideal (/ = 0) or a nonideal (J 
^ 0) solid solution. It is most likely that the strength of the 
interaction between perturbed sites dictates whether the reaction 
proceeds as a homogeneous (strong coupling) or inhomogeneous 
process. 

The categorization of homogeneous and heterogeneous solid 
state reactions is widely used but not clearly defined. It 
obviously depends on the meaning of "phase" and the level of 
"graininess". Microscopically, every compound has its separate 
phase space; therefore, every reaction is heterogeneous on that 
scale. On macroscopic or mesoscopic length scales, however, 
the process can be viewed as being homogeneous if the reactant 
and product molecules form a solid solution and there is no 
macroscopic phase separation. Otherwise, the reaction is called 
heterogeneous. Apart from an important role played by 
structural defects, the long-range nature of the elastic interaction 
between perturbed sites might determine the homogeneity or 
heterogeneity of the process in the macroscopic sense. Due to 
the long-range nature of the elastic dipole—elastic dipole 
interaction, there is a shape-dependence effect23 analogous to 
the electric dipole interaction. 

Lastly, there will be a phase transition given by the interaction 
term. A necessary but not sufficient condition for a phase 
transition to occur is / ^ 0. This condition, supplemented by 
A = 1IiJ, gives the thermodynamic equilibrium between phases 
with different concentrations of perturbations and, in effect, 
predicts a discontinuous phase transition. The condition A = 
1IiJ is equivalent to A£° = <t>def and is a limit of stability of the 
system against a single-molecule perturbation. For A£° < <l>def> 
a spontaneous process for formation of perturbations will 
proceed even with the presence of an activation barrier. In terms 
of the Ising model, the situation when a reaction proceeds (A 
* 1IiJ) corresponds to a suppresion of the phase transition due 
to a random field. Equilibrium for the chemical reaction 
corresponds to thermodynamic equilibrium between domains 
of an Ising "ferromagnet". A continuous transition takes place 
at a critical temperature calculated from the condition Xa = 0, 
which is fulfilled for x =lli and gives kTc =

 1IAJ-

5. Discussion 

It is illuminating to briefly survey some well-known solid 
state transformations that can be interpreted and analyzed within 
the framework of the present theory. In particular, the focus 
will be on what effects are responsible for chemical pressure 
and how elastic multipoles can be defined and identified. 

A. Temperature-Induced Polymerization. It is well-
known that this transformation causes substantial strain in the 
monomer lattice, so mechanical properties play an important 
role. Baughman17 has used a simplified description of the 
properties to explain the important autocatalytic effect for 
thermal polymerization. From the perspective of this theory, 
Baughman's model is based on the following assumptions: (i) 
The monomer crystal is treated as an elastic continuum 
characterized by the elastic constant tensor Cm. (ii) Perturba­
tions to the monomer crystal are polymer chains of a mesoscopic 
size and thus are treated as an elastic medium as well. The 
energy needed to create a unit volume of a polymer is, therefore, 
AE0 = V2epCpep where CP is the elastic constant tensor of the 
polymer and ep is the strain characteristic of the unit volume of 

the polymer, (iii) The effect of polymerization in the monomer 
lattice is considered by introducing local stresses at the expense 
of energy AEP, e.g., the system may be modeled by elastic 
dipoles embedded in the monomer elastic medium. The elastic 
dipole is defined, therefore, as a purely mechanical local stress, 
p = Cpep. Observe that in the model, the initiation effect is 
neglected and therefore, the nature of the elastic dipole is purely 
mechanical. 

The autocatalytic effect for the thermal polymerization is due 
to a concentration dependence of the activation energy. This 
is readily found from eq 4.16 with appropriate assignments of 
the parameters. 

A£act = ^C^iN-'J^ioinMn'))]^1 (5.1) 
n n' 

The perturbation—perturbation correlation function can be 
approximated by x2 for uncorrected perturbations, by x(l — x) 
for correlated but uniformly distributed sites of a polymerized 
monomer, and by (1 — X)Zm*"1 for correlated, linear oligomers. 
The concentration dependence of the activation energy explains 
the autocatalytic effect for thermal polymerization. Baughman's 
equation17 for the activation energy corresponds to the x(l — 
x) approximation for the correlation function. 

Another important effect of the polymerization on the 
monomer lattice is modification of the elastic properties of the 
monomer due to the introduced perturbations. The effective 
elastic compliance tensor can be calculated from eq 4.11 by 
keeping in mind that the elastic dipole has been identified as 
Cpep. Finally, the resulting strain due to the polymerization is 
calculated from eq 4.9 and can be approximated by a linear 
dependence on the concentration for a uniform distribution of 
polymerized sites. For the thermal polymerization, the degree 
of conversion can be calculated from the corresponding equa­
tions with A(A,) and J calculated by assuming the elastic dipoles 
as the only perturbations. 

B. Photoinduced Reactions. Photoinduced reactions are 
often considered as being most typical for solid state reactions. 
There have been a few theoretical studies18'3536 where emphasis 
has been focused on structural change. Nagaosa's treatment18 

is the most similar to ours since his development also led to 
the Ising spin Hamiltonian as a model for the process. However, 
our treatment of the mechanical response function and the lattice 
deformation energy is more extensive. Also, it gives a direct 
relation to elasticity theory and insight into local, mechanical 
perturbations. On the other hand, Nagaosa has concentrated 
on the kinetic aspect of the Ising model, and for this reason, 
both theories can be considered as being complementary. The 
model for a photoinduced reaction is based on the following 
assumptions cast in the mold of the theory developed here: (i) 
Due to illumination of the crystal, molecules are in electronically 
excited states with energy AE0. The collective excitation (an 
exciton) is then localized due to self-trapping.37 The self-trapped 
state represents the feedback effect of the chemical pressure 
introduced into the lattice by an excited molecule, (ii) The self-
trapped, localized state has energy A = AEP — ^W- The 
deformation energy has to be larger than the exciton band width 
so that the localized state will be well-separated from the band. 
The deformation energy is the energy of interaction of the elastic 
multipoles which can be represented by the chemical pressure. 
The strength of the multipoles depends on how strongly the D 
term (the change in van der Waals energy on excitation) in the 
exciton energy depends on molecular displacements. 

(35) Collins, M. A.; Craig, D. P. Chem. Phys. 1981, 54, 305. 
(36) Korner, H.; Mahler, G. Phys. Rev. Lett. 1990, 65, 984. 
(37) Toyozawa, Y. Solid State Commun. 1992, 84, 255. 
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The total energy balance for a crystal expresses the assump­
tion that energy gained by the lattice due to deformation is used 
to create self-trapped, excited molecules. Therefore, as long 
as <E>def > (m - I)A, a cluster of m excited molecules will be 
created. A spontaneous creation, where m —* <*>, requires $def 
> AE0. In case of photoinduced polymerization, oligomeriza-
tion depends on the mutual relation between excitation energy 
and lattice deformation energy. The closer these values are, 
the larger the oligomers are that can be formed. 

Recent extensive studies of crystal-to-crystal polymerization 
in 2,5-distyrylpyrazine (DSP)16 provide an excellent illustration 
of this. The reaction proceeds in a two-stage fashion. Irradia­
tion with light of wavelength between 480 and 400 nm yields 
an oligomer which is on average a trimer. Further or initial 
irradiation with light of wavelength less than 400 nm causes 
formation of a high polymer. The spectroscopic studies have 
shown that this wavelength dependence of the reaction is due 
to two separate electronic states. Therefore, in terms of the 
present theory, the dependence corresponds to different A£° 
energies and their relationships to corresponding deformation 
energies. The effect of the polymerization in the crystal on 
optical phonon frequencies has also been studied, but this 
dynamical aspect has not been considered and is left for further 
development. It has been found16 that mode softening, postu­
lated as the phonon assistance mechanism,12 is a result of the 
photoreaction rather than necessarily being a cause of the 
reaction itself. This argument may be posed in general for 
phonon assistance12 within the framework of the present theory. 
In other words, the internal strain, (Q), induced by a reaction 
can (and should) reflect patterns of lattice normal modes. This 
corresponds to elastic multipoles and strains being expressed 
in terms of the normal mode coordinates. 

The theory formulated above can also explain recent experi­
ments on photoinduced phase transitions38,39 in terms of a 
photoinduced reaction. An interesting aspect which follows 
from this analogy is the possibility for formation of reactant/ 
product domain walls39 and their motion, perhaps by quantum 
tunneling, in the course of the reaction. 

C. Shock-Induced Reaction (Detonation). Shock-induced 
reactions are of great relevance to organic energetic materials. 
In particular, development of a mechanism for detonation of 
molecular materials is of current interest. Recently, a theoretical 
model has been proposed40 to describe the initiation step in 
chemical reactivity (dissociation) of shocked energetic materials. 
The essence of the model is that the mechanical energy of the 
shock creates vibrationally "hot" molecules in an indirect process 
which involves heat. The mechanical energy in the compressed 
solid is stored in the phonon heat bath and is subsequently 
transferred by intramolecular "doorway" modes into the ener­
getic molecules, thus making them vibrationally hot. Details 
of this transfer have been elaborated,4041 and it is considered 
to be the initiation of the detonation process. The next stage 
involves creation of hot molecules over macroscopic distances, 
and it is at this stage where the present theory offers a model 
for the macroscopic nature of the shock-induced reaction which 
includes the interaction between randomly distributed hot 
molecules. Within the context of the theory formulated here, 
these concepts may framed as the following assumptions: (i) 
A crystal is treated as an elastic medium, with a strain-dependent 

(38) Koshihara, S.; Tokura, Y.; Iwasa, Y.; Koda, T. Phys. Rev. 1991, 
B44, 431. Koshihara, S.; Tokura, Y.; Takeda, K.; Koda, T., Phys. Rev. Lett. 
1992,68, 1148. 

(39) Koshihara, S.; Tokura, Y.; Mitani, T.; Saito, G.; Koda, T. Phys. 
Rev. 1990, B42, 6853. 

(40) Dlott, D. D.; Fayer, M. D. J. Chem. Phys. 1990, 92, 3798. 
(41) Tokmakoff, A.; Fayer, M. D.; Dlott, D. D. /. Phys. Chem. 1993, 

97, 1901. 

compressibility, S, thereby creating a nonlinear response. The 
shock is represented as an uniaxial stress pu°, and the response 
to the stress is measured by lattice strain, (ii) The perturbations 
are vibrationally "hot" molecules, i.e. molecules that are in 
localized, vibrationally excited states. The molecules have to 
be hot enough to be able to dissociate. The energy of the hot 
molecule will be A£° = 2Zjnjti(Dj (with the usual notation n,- for 
the occupation number and a>j for frequency of a mode), which 
can be approximated by a vibrational quasi-temperature, kdVib. 
In the summation over the vibrational modes, the most important 
are the so-called doorway modes4041 of large-amplitude sig­
nificant anharmonicity and low frequency (relative to other 
intramolecular modes), (iii) The vibrationally hot molecules 
introduce local, mechanical perturbations into the lattice, and 
it is assumed, for simplicity, that the perturbation is a local stress 
that is represented by an appropriate elastic dipole. The dipole 
is defined as Py « 'ZwjyiJ where y,/' stands for the strain 
Griineisen parameter of the mode j and the yth component of 
the strain tensor. 

This formulation of the elastic dipole seems to be the most 
obvious, but it can be argued that Griineisen parameters for 
vibrational modes are small and, therefore, the local stress would 
be small. This, however, will not be true for doorway modes. 
On the other hand, as the energy A£° has to be equal to that 
stored in the phonon modes, it is possible that the local stress 
is determined by the Griineisen parameters of the lattice modes. 

The energy of the compressed crystal can be written as 

AE = m(AE° + Pe) + V2Afv0(eCe + £p„°ea) (5.2) 
i 

where P is the elastic dipole and Vo stands for the initial volume 
of the unit cell. The final volume under the uniaxial stress pa 
is calculated as 

vf = - V 0 X I X M ^ A + Pu*] (5-3) 
ij kl 

where p = Vo-1P is the local stress related to the elastic dipole 
created by a hot molecule and x = m/N is the fraction of the 
hot molecules. The energy is finally found as AE = AE0X — 
d̂efC*). where the deformation energy is 

*<*<*) = V o S S V f o ^ + P^\pA + Pkpc] (5.4) 
ij kl 

and under the condition <&def (x = I) > A£° (= kdva,), 
corresponding to AE < 0, the vibrationally hot molecules are 
created spontaneously. Equation 5.2 with the condition AE = 
0 gives an energy balance analogous to the one considered by 
Tokmakoff, Fayer, and Dlott41 where the first two terms of our 
equation have been replaced by heat related to entropy transport 
that is stored in a phonon bath. The phonon heat capacity would 
correspond to our A£°, and the volume-dependent entropy 
would correspond to interaction of the elastic dipole with lattice 
strain as expressed by Griineisen parameters. 

The process can then be explained by the following scenario. 
Assume that a vibrational excitation level in the crystal is 
reached by the up-pumping mechanism suggested by Dlott and 
Fayer.40 The excitation can then be localized by the mechanism 
of self-trapping. The self-trapped state with large lattice 
distortion is separated from the moving vibrational exciton state. 
In the case of low-frequency, large-amplitude doorway modes, 
the lattice distortion energy is sizeable and localizes the state 
by the amount of energy <£>def below that of the free-moving 
vibrational exciton. This energy is released when the shock-
created free-vibrational exciton relaxes to the self-trapped state 
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and can be used to create other self-trapped vibrationally hot 
molecules. At the condition 4><jef S A£°, an infinite number of 
such molecules is simultaneously created. This can be seen as 
a direct pumping of the vibrationally hot molecules by the 
mechanical energy of the shock once the initiation at one 
molecule occurs. Defects and impurities help to localize the 
collective states which are well-known effects. 

6. Conclusions 

The idea of chemical pressure in solid state reactions can be 
extended by a model based on elastic multipoles. Generalization 
of the theory of chemical pressure and solid state reactions can 
then be achieved. This development allows the quantitative 
definition of several basic concepts of solid state reactivity that 
have heretofore resisted such description. 

The concepts of reaction cavity and steric compression have 
been suggested previously and have proven useful for a 
qualitative understanding of solid state reactions. Although 
these ideas have proven useful in thinking about solid state 
reactions, they have also remained somewhat nebulous, thereby 
limiting their applicability. The present formulation of how 
chemical reactions in solids possess both local and global 
characteristics has illuminated these concepts. The cavity 
surrounding a product molecule is discussed as well as the forces 
that are associated with its production. These forces can be 
generalized as the chemical pressure and, as such, may be 
directly related to the concept of steric compression, being local 
and molecular counterparts of stress and related to compression 
in a macroscopic sense. The cavity that is defined can be 
identified with the reaction cavity. The elastic multipoles, being 
a representation of a force distribution, are found to be ideal to 
describe both the geometry and energetics of the reaction cavity. 
The symmetry of the reaction cavity is reflected by the elastic 
multipoles, and their changes in a course of reaction are 

described by the appropriate components of their tensors. Thus, 
one can define an "order parameter" for a solid state reaction 
and relate it to a "continuous symmetry measure" that has been 
recently advocated.42 

The lattice deformation energy and strain can be related to 
the energetics of the solid state reaction. Both are related to 
ideas developed regarding the role of stress in solid state 
reactivity. The demonstration of how local stresses, represented 
by elastic multipoles, couple and interact through the elasticity 
of the lattice that can subsequently lead to a phase transition is 
another relevant outcome of the theory. The role of clustering 
of products and the heterogeneity of the reaction can also be 
elucidated. The mechanical response of the lattice to the 
reaction, the reaction cavity, and the steric compression as 
formulated by the theory can be calculated by use of measurable 
quantities: atomic displacement parameters and optical and 
acoustic (for the elasticity) phonon spectra. Thus, while the 
theory joins important experimental parameters, it provides a 
uniform framework that can be applied to thermal-, light-, and 
shock- (detonation) induced reactions. A direct correspondence 
to the molecular orbital theory of reactivity and concepts 
mirroring that of hard and soft acids and bases43 can be 
envisioned. The elastic multipole formulation can also be 
extended to understanding properties of ordered molecular films. 
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